Polarization-Maintaining Optical Circulator (3 \& 4 port)

ACP's polarization maintaining optical circulator utilizes proprietary designs and metal bonding micro optics packaging. It provides low insertion loss, broad band high isolation, high extinction ratio, excellent temperature stability and epoxy free optical path. It can be used for wavelength add/drop, dispersion compensation, and EDFA applications.

FEATURES

Low Insertion Loss
Wide Band, High Isolation
High Extinction Ratio
Compact In-line Package
High Stability and Reliability
Epoxy Free Optical Path

APPLICATION

Optical Amplifier
Metro Area Network
Wavelength Add/Drop
Dispersion Compensation
Bi-directional Communication

PERFORMANCE SPECIFICATIONS

Parameter	Specifications		
Number of Ports	3		4
Operating Wavelength	1310 or 1550nm		1310 or 1550nm
Bandwidth	$\pm 20 \mathrm{~nm}$		$\pm 20 \mathrm{~nm}$
Grade	P	A	P
Configuration	P1-P2 and P2-P3		P1-P2, P2-P3 and P3-P4
Typical Peak Isolation	40dB		40 dB
Minimum Isolation*	$\geq 25 \mathrm{~dB}$		$\geq 30 \mathrm{~dB}$
Insertion Loss (Typ.)	0.60 dB	0.80 dB	1.0 dB
Insertion Loss (Max)	$\leq 0.80 \mathrm{~dB}$	$\leq 1.0 \mathrm{~dB}$	$\leq 1.3 \mathrm{~dB}$
Return Loss	$\geq 55 \mathrm{~dB}$	$\geq 55 \mathrm{~dB}$	$\geq 55 \mathrm{~dB}$
Extinction Ratio*	$\geq 20 \mathrm{~dB}$	$\geq 20 \mathrm{~dB}$	$\geq 16 \mathrm{~dB}$
Channel Crosstalk	$\geq 50 \mathrm{~dB}$	$\geq 50 \mathrm{~dB}$	$\geq 50 \mathrm{~dB}$
Optical Power	$\leq 500 \mathrm{~mW}$		$\leq 300 \mathrm{~mW}$
Operating Temperature	0 to $+70^{\circ} \mathrm{C}$		
Storage Temperature	- 40 to +85		
Package Dimensions	$\begin{array}{r} A=\Phi 5.5 \times L \\ \Phi 5.5 \times L \\ M=\Phi 5.5 \times L \end{array}$	Both axes Slow or fa Both axes	

Note:
*Extinction ratio is guaranteed from $10 \sim 50^{\circ} \mathrm{C}$.

1. The PM fiber and the connector key are aligned to the slow axis.
2. ER value applies to fiber $\leq 0.75 \mathrm{~m}$. Increased fiber length will decrease ER.
3. For each connector, IL will be 0.3 dB higher, RL 5 dB lower, and ER 2 dB lower.

All values referenced are without connector.

Polarization-Maintaining Optical Circulator (3 \& 4 port)

MECHANICAL DIMENSIONS

A Package

M Package

PORT CONFIGURATIONS

ORDERING INFORMATION

PMOC	Port	Grade	Operating Wavelength	Package	Fiber Type	Pigtail Style	Fiber Length	In Connector	Out Connector	Working axis
	$3=3$ Port	$\mathrm{P}=\mathrm{P}$ Grade	$31=1310 \mathrm{~nm}$	A=Apackage	M=PM1310	1=Bare fiber	$07=0.75 \mathrm{~m}$	$0=$ None	$0=$ None	S=Slow axis working
	$4=4$ Port	A $=$ A Grade	$55=1550 \mathrm{~nm}$	$\mathrm{M}=$ M package	$\mathrm{N}=\mathrm{PM} 1550$	2=900um	$10=1.0 \mathrm{~m}$	1 = FC/APC	1 = FC/APC	F=Fast axis working
						loose tube	.	$2=F C / P C$	$2=F C / P C$	$\mathrm{B}=$ Both axes working
								3 = SC/APC	3 = SC/APC	
							.	4 =SC/PC	4 = SC/PC	
								$5=$ ST	5 = ST	
								6 = LC/UPC	6 = LC/UPC	
								7 = LC/APC	7 = LC/APC	

